Adaptive Metropolis algorithm using variational Bayesian adaptive Kalman filter
نویسندگان
چکیده
Markov chainMonte Carlo (MCMC)methods are powerful computational tools for analysis of complex statistical problems. However, their computational efficiency is highly dependent on the chosen proposal distribution, which is generally difficult to find. One way to solve this problem is to use adaptiveMCMCalgorithmswhich automatically tune the statistics of a proposal distribution during the MCMC run. A new adaptive MCMC algorithm, called the variational Bayesian adaptive Metropolis (VBAM) algorithm, is developed. The VBAM algorithm updates the proposal covariance matrix using the variational Bayesian adaptive Kalman filter (VB-AKF). A strong law of large numbers for the VBAM algorithm is proven. The empirical convergence results for three simulated examples and for two real data examples are also provided. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملFuzzy Adaptive Variational Bayesian Unscented Kalman Filter
We consider the problem of nonlinear filtering under the circumstance of unknown covariance statistic of the measurement noise. A novel adaptive unscented Kalman filter (UKF) integrating variational Bayesian methods and fuzzy logic techniques is proposed in this paper. It is called fuzzy adaptive variational Bayesian UKF (FAVBUKF). Firstly, the sufficient statistics of the measurement noise var...
متن کاملAdaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 83 شماره
صفحات -
تاریخ انتشار 2015